Jacob S. Prince

jacob.samuel.prince@gmail.com linkedin.com/in/jacobprince jacob-prince.github.io

Education

Harvard University

Ph.D. Candidate in Psychology (Cognition, Brain, and Behavior) Advisors: Dr. Talia Konkle and Dr. George Alvarez

Carnegie Mellon University

Research Associate, Psychology Department Advisor: Dr. Michael Tarr

Yale University B.S. in Cognitive Science, GPA: 3.70/4.00 Advisor: Dr. Hal Blumenfeld Cambridge, MA September 2021 – present

Pittsburgh, PA September 2019 – August 2021

New Haven, CT September 2014 – December 2018

Selected Publications

Google Scholar Profile

- 1. Prince, JS., Alvarez, GA., Konkle, T. (2024). Contrastive learning explains the emergence and function of visual category-selective regions. *Science Advances*. https://doi.org/10.1126/sciadv.adl1776.
- 2. Prince, JS., Fajardo, G., Alvarez, GA., Konkle, T. (2024). Manipulating dropout reveals an optimal balance of efficiency and robustness in biological and machine visual systems. *ICLR 2024*. https://openreview.net/forum?id=ADDCErFzev.
- 3. Conwell, C., Prince, JS., Alvarez, GA., Konkle, T. (2024). A large-scale examination of inductive biases shaping high-level visual representation in brains and machines. *Nature Communications*. https://doi.org/10.1038/s41467-024-53147-y.
- 4. **Prince, JS.**, Alvarez, GA., Konkle, T. (2024). Representation with a capital R: measuring functional alignment with causal perturbation. *UniReps Workshop @ NeurIPS 2024* (*Oral*). https://openreview.net/forum?id=pn7KvRSRm3¬eId=jK926fssbe.
- 5. Prince, JS., Conwell, C., Alvarez, GA., Konkle, T. (2024). A case for sparse positive alignment of neural systems. *Re-Align Workshop @ ICLR 2024*. https://openreview.net/forum?id=8FnN1QmR84.
- 6. Kay, KN., Prince, JS., Gebhart, T., Tuckute, G., Zhou, J., Naselaris, T., Schutt, H. (2024). Disentangling signal and noise in neural responses through generative modeling. *bioRxiv*. https://doi.org/10.1101/2024.04.22.590510.
- 7. Vinken, K., Prince, JS., Konkle, T., Livingstone, M. (2023). The neural code for 'face cells' is not face specific. *Science Advances*. https://doi.org/10.1126/sciadv.adg1736.
- 8. Prince, JS., Charest, I., Kurzawski, JW., Pyles, JA., Tarr, MJ., Kay, KN. (2022). Improving the accuracy of single-trial fMRI response estimates using GLMsingle. *eLife*. https://doi.org/10.7554/eLife.77599.
- 9. Jain, N., Wang, A., Henderson, MH., Lin, R., Prince, JS. ... Wehbe L. (2022). Selectivity for food in human ventral visual cortex. *Nature Communications Biology*. https://doi.org/10.1038/s42003-023-04546-2.
- 10. Allen, EJ., St-Yves, G., Wu, Y., Breedlove, JL., Prince, JS. ... Kay KN. (2022). A massive 7T fMRI dataset to bridge cognitive neuroscience and artificial intelligence. *Nature Neuroscience*. https://doi.org/10.1038/s41593-021-00962-x.
- Kronemer, SI., Aksen, M., Ding, Z., Ryu, JH., Xin, Q., Ding, Z., Prince, JS...Blumenfeld, H. (2022). Human visual consciousness involves large scale cortical and subcortical networks independent of task report and eye movement activity. *Nature Communications*. https://doi.org/10.1038/s41467-022-35117-4.

INVITED TALKS

• Harvard University – Kempner Institute <i>Title TBD</i>	Upcoming: May. 14, 2025
• Brown University – AI, Neuro, CogSci Research (ANCOR) talk series Title TBD	Upcoming: Apr. 28, 2025
 Stanford University – Scaffolding of Cognition Team (PI: Cameron Ellis) Title TBD 	Upcoming: Mar. 14, 2025
University of Minnesota – Center for Neuroengineering Seminar <i>Title TBD</i>	Upcoming: Feb. 27, 2025
 University of Minnesota – Computational Visual Neuroscience Laboratory (PI: Kendrick Kay) Enhancing the reliability of neural data with signal-aware low-rank denoising. 	Oct. 24, 2024
Bissell Grogan Symposium, The Brimmer and May School, Newton MA The promise and pitfalls of AI for visual recognition.	Jan. 16, 2024
 Visual Inference Lab, Columbia University (PI: Nikolaus Kriegeskorte) A unifying contrastive coding framework for visual category representation in the human brain. 	Jan. 5, 2024
• Vision and Computational Cognition Group, Max Planck Institute (PI: Martin Hebart) A unifying contrastive coding framework for visual category representation in the human brain.	Dec. 21, 2023
• Brains Minds and Machines Summer Course, Marine Biological Laboratory, Woods Hole <i>Quantifying dataset diversity with brain-guided curriculum learning.</i>	Aug. 23, 2023
University of Minnesota – Dept. of Psychology Perception Lunch GLMsingle: A toolbox for accurate single-trial fMRI response estimates.	Feb. 21, 2023
 MIT Brain and Cognitive Sciences – Computational Tutorial Series GLMsingle: a toolbox for improving single-trial fMRI response estimates. Recording: https://cbmm.mit.edu/video/glmsingle-toolbox-improving-single-trial-fmri-response-estimates. 	April 29, 2022
• University of Minnesota – Computational Visual Neuroscience Laboratory (PI: Kendrick Kay) Data-driven fMRI denoising enhances cross-dataset representational stability and boosts image decodability.	Sept. 25, 2020
 Natural Scenes Dataset Conference 2020 (online) GLMsingle: a turnkey solution for accurate single-trial fMRI estimates. 	Aug. 12, 2020
• University of California, Irvine – Visual Perception and Neuroimaging Lab (PI: Emily Grossman) The effect of fMRI design and preprocessing paradigms on SNR and temporal autocorrelation.	Mar. 18, 2020
• Carnegie Mellon University - VisCog Group (PIs: M.Behrmann, D.Plaut, M.Tarr, B.Nozari, B.Mahon) An overview of large-scale neuroimaging datasets and implications for the study of high level vision.	Feb. 3, 2020
The overview of targe scale neuronnaging autoses and implections for the study of high level vision.	

CONFERENCE TALKS

- 1. **Prince, JS.**, Alvarez, GA., Konkle, T. (2024). Representation with a capital R: measuring functional alignment with causal perturbation. Presented at the UniReps Workshop, NeurIPS 2024, Dec 14, Vancouver, Canada.
- 2. Prince, JS., Conwell, C., Konkle, T. (2024). Large datasets: a Swiss Army knife for diverse research aims in NeuroAI. Presented at "Large-scale visual neural datasets: where do we go from here?" symposium; Vision Sciences Society, May 17-24, St. Pete Beach, FL.
- 3. Prince, JS., Fajardo, G., Alvarez, GA., Konkle, T. (2023). Manipulating category selectivity and information distribution in visual recognition systems using dropout. Presented at the Conference on Cognitive Computational Neuroscience, Aug 24-27, Oxford, UK.
- 4. **Prince**, **JS**., Konkle, T. (2022). Neural and computational evidence that category-selective visual regions are facets of a unified object space. Presented at the Vision Sciences Society, May 13-18, St. Pete Beach, FL.
- 5. Prince, JS., Konkle, T. (2020). Computational evidence for integrated rather than specialized feature tuning in category-selective regions. Presented at the Virtual Vision Sciences Society, June 19-24. Video: www.tinyurl.com/jp-vss2020.

Selected Conference Posters

- 1. **Prince**, **JS**., Wang, B., Jagadeesh, AV., Fel, T., Lo, E., Alvarez, GA., Livingstone, MS., Konkle, T. (2025). Feature accentuation along the encoding axes of IT neurons uncovers hidden differences in model-brain alignment. Submitted to Vision Sciences Society, May 16-20, St. Pete Beach, FL.
- 2. **Prince, JS.**, Hamblin, C., Alvarez, GA., Konkle, T. (2024). Dissecting visual population codes with brain-guided feature accentuation. Presented at the Conference on Cognitive Computational Neuroscience, Aug 6-9, Boston, MA.
- 3. Prince, JS., Hamblin, C., Alvarez, GA., Konkle, T. (2024). Interpreting distributed population codes with feature-accentuated visual encoding models. Presented at Vision Sciences Society, May 17-24, St. Pete Beach, FL.
- 4. Conwell, C., **Prince**, **JS**., Alvarez, GA., Konkle, T. (2023). The Unreasonable Effectiveness of Word Models in Predicting High-Level Visual Cortex Responses to Natural Images. Presented at the Conference on Cognitive Computational Neuroscience, Aug 24-27, Oxford, UK.
- 5. Conwell, C., **Prince**, **JS**., Hamblin, C., Alvarez, GA. (2023). Controlled assessment of CLIP-style language-aligned vision models in prediction of brain & behavioral data. Presented at the Workshop on Understanding Foundation Models, ICLR 2023, May 1-5, Kigali, Rwanda.
- 6. Prince, JS., Alvarez, GA., Konkle, T. (2023). Lesioning category-selective units *in silico* yields functionally specialized deficits. Presented at the Vision Sciences Society, May 19-24, St. Pete Beach, FL.
- 7. Conwell, C., **Prince**, **JS**., Alvarez, GA., Konkle, T. (2023). Language Models of Visual Cortex: Where do they work? And why do they work so well where they do? Presented at the Vision Sciences Society, May 19-24, St. Pete Beach, FL.
- 8. Conwell, C., **Prince**, JS., Alvarez, G., Konkle, T. (2022). What can 5.17 billion regression fits tell us about artificial models and the human visual system? Presented at the Vision Sciences Society, May 13-18, St. Pete Beach, FL.
- 9. Conwell, C., **Prince, JS.**, Kay, K., Alvarez, GA., Konkle, T. (2022). Opportunistic experiments on a large-scale survey of diverse artificial vision models in prediction of 7T human fMRI data. Presented at the Conference on Cognitive Computational Neuroscience, August 25-28, San Francisco, CA.
- 10. Vinken, K., Prince, JS., Konkle, T., Livingstone, M. (2022). Common encoding axes for face-selectivity and non-face objects in macaque face cells. Presented at the Conference on Cognitive Computational Neuroscience, August 25-28, San Francisco, CA.
- 11. Prince, JS., Charest, I., Kurzawski, JW., Pyles, JA., Tarr, MJ., Kay, KN. (2021). GLMsingle: a turnkey solution for accurate single-trial fMRI response estimates. Presented at the Virtual Vision Sciences Society, May 21-26. Video: www.tinyurl.com/jp-vss2021.
- 12. Kallmayer, A., **Prince**, **JS**., Konkle, T. (2020). Comparing representations that support object, scene, and face recognition using deepnet trajectory analysis. Presented at the Virtual Vision Sciences Society, June 19-24.
- 13. Prince, JS., Konkle, T. (2019). Relating category-selective regions in biological and artificial neural networks. Presented at the Vision Sciences Society, May 17-22, St. Pete Beach, FL.
- 14. **Prince**, JS...Blumenfeld, H. (2017). Machine learning to predict conscious visual perception using pupillary dynamics. Presented at the Society for Neuroscience, November 11-15, Washington, D.C.

Grants and Awards

- National Defense Science and Engineering Graduate (NDSEG) Fellowship
- Elsevier/Vision Research Travel Award
- Rising Stars Travel Grant: Shared Visual Representations in Humans and Machines Workshop

Award Term: 2022-2024 Vision Sciences Society 2020 NeurIPS 2019

Activities and Service

• Co-chair, Trainee Organizing Committee, Cognitive Computational Neuroscience conference <i>Extensive involvement in planning logistics for the conference; organizing 650-person social event.</i>	August 2024	
• Brains, Minds, and Machines Summer Course, Marine Biological Laboratory, Woods Hole Attended intensive month-long summer school, completed project assessing whether human visual representational dim selection of useful training samples for object recognition ANNs.	August 2023 eensions can guide the	
• Mentor, Harvard Prospective Ph.D. & RA Event in Psychology (PPREP) Sept. 2021 - present Provide career guidance and CV/essay feedback to 3 students (per year) from historically minoritized groups in STEM who are applying to graduate school, lab manager, and/or research assistant positions.		
• TA, Computational Methods in Human Neuroscience (NSCI 258, Prof. Nick Turk-Browne, Yale) Spring 2019 Assisted with creation and debugging of Python workbooks with focus on ML-driven computational fMRI analyses. Mentored students and reinforced key concepts from lecture during weekly office hours.		
 Journal and conference reviewing: Nature Neuroscience; ICLR; Imaging Neuroscience; Cognitive Computational Neuroscience; SVHRM Workshop @ NeurIPS; Re-Align Workshop @ NeurIPS; UniReps Workshop @ NeurIPS 		